P P SAVANI UNIVERSITY

First Semester of B. Tech. Examination January 2022

SESH1230 Fundamentals of Chemistry & Chemical Engineering

25.01.2022, Tuesday Time: 09:00 a.m. To 11:30 a.m. Maximum Marks: 60

Instructions:

	assisting paper comprises or two sections.	
3. Make s	n I and II must be attempted in separate answer sheets. Suitable assumptions and draw neat figures with Pencil wherever required.	
	scientific calculator is allowed.	
	solution distribution is distributed.	
	SECTION - I	
Q - 1 (a)	Explain Lewis Octet Rule along with the limitations.	[05]
Q-1(b)	Explain the properties of ionic compounds	[05]
Q-2(a)	Explain valence bond theory with two examples	[05]
Q-2 (b)	Explain reverse osmosis for desalination of brackish water.	[05]
Q-3(a)	Explain hot lime-soda process for softening of water.	[05]
Q-3(b)	State the postulates of Arrhenius Theory with limitations.	[05]
	OR	11
Q-3(a)	Explain the concept of Molar conductance	[05]
Q-3(b)	A sample on water analysis has been found to contain following: $Ca(HCO_3)_2 = 10.5$ ppm,	[05]
	$Ca(HCO_3)_2$ = 12.5 ppm, $CaSO_4$ = 7.5 ppm, $CaCl_2$ = 8.2 ppm and $MgSO_4$ = 2.6 ppm. Calculate the	
	temporary, permanent and total hardness. (Atomic. Wt., Ca=40, Mg= 24, S=32, C=12, O=16, Cl=35.5 & H=1)	
	SECTION - II	
Q - 1 (a)	Define: Thermodynamics, system, boundary and surroundings.	[05]
Q-1(b)	Draw the following Flowsheet symbols: Centrifugal Pump, Shell & Tube Heat Exchanger, Evaporator, Tray column, Gate Valve	[05]
Q - 2 (a)	Define heat transfer and give the applications of heat transfer.	[05]
Q-2(b)	What is chemical reaction? State different types of reaction and explain any one type.	[05]
Q - 3 (a)	Define rate of reaction and state factors affecting the rate of reaction.	[05]
Q - 3 (b)	State different types of systems and explain any one type of system.	[05]
	OR	
Q-3(a)	Explain molecular diffusion in gases with Fick's law.	[05]
Q - 3 (b)	It is desired to make 1000 Kg of a solution containing 35 % by weight of substance A. Two	[05]
	solutions are available, one containing 10 % by weight A and other containing 50 % by weight A. How many Kg of each solution will be required?	